Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 7859, 2024 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570591

RESUMO

Local adaptation can increase fitness under stable environmental conditions. However, in rapidly changing environments, compensatory mechanisms enabled through plasticity may better promote fitness. Climate change is causing devastating impacts on coral reefs globally and understanding the potential for adaptive and plastic responses is critical for reef management. We conducted a four-year, three-way reciprocal transplant of the Caribbean coral Siderastrea siderea across forereef, backreef, and nearshore populations in Belize to investigate the potential for environmental specialization versus plasticity in this species. Corals maintained high survival within forereef and backreef environments, but transplantation to nearshore environments resulted in high mortality, suggesting that nearshore environments present strong environmental selection. Only forereef-sourced corals demonstrated evidence of environmental specialization, exhibiting the highest growth in the forereef. Gene expression profiling 3.5 years post-transplantation revealed that transplanted coral hosts exhibited profiles more similar to other corals in the same reef environment, regardless of their source location, suggesting that transcriptome plasticity facilitates acclimatization to environmental change in S. siderea. In contrast, algal symbiont (Cladocopium goreaui) gene expression showcased functional variation between source locations that was maintained post-transplantation. Our findings suggest limited acclimatory capacity of some S. siderea populations under strong environmental selection and highlight the potential limits of coral physiological plasticity in reef restoration.


Assuntos
Antozoários , Animais , Antozoários/fisiologia , Recifes de Corais , Região do Caribe , Transcriptoma , Aclimatação/genética
3.
PLoS One ; 17(9): e0273897, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36054126

RESUMO

Global change driven by anthropogenic carbon emissions is altering ecosystems at unprecedented rates, especially coral reefs, whose symbiosis with algal symbionts is particularly vulnerable to increasing ocean temperatures and altered carbonate chemistry. Here, we assess the physiological responses of three Caribbean coral (animal host + algal symbiont) species from an inshore and offshore reef environment after exposure to simulated ocean warming (28, 31°C), acidification (300-3290 µatm), and the combination of stressors for 93 days. We used multidimensional analyses to assess how a variety of coral physiological parameters respond to ocean acidification and warming. Our results demonstrate reductions in coral health in Siderastrea siderea and Porites astreoides in response to projected ocean acidification, while future warming elicited severe declines in Pseudodiploria strigosa. Offshore S. siderea fragments exhibited higher physiological plasticity than inshore counterparts, suggesting that this offshore population was more susceptible to changing conditions. There were no plasticity differences in P. strigosa and P. astreoides between natal reef environments, however, temperature evoked stronger responses in both species. Interestingly, while each species exhibited unique physiological responses to ocean acidification and warming, when data from all three species are modelled together, convergent stress responses to these conditions are observed, highlighting the overall sensitivities of tropical corals to these stressors. Our results demonstrate that while ocean warming is a severe acute stressor that will have dire consequences for coral reefs globally, chronic exposure to acidification may also impact coral physiology to a greater extent in some species than previously assumed. Further, our study identifies S. siderea and P. astreoides as potential 'winners' on future Caribbean coral reefs due to their resilience under projected global change stressors, while P. strigosa will likely be a 'loser' due to their sensitivity to thermal stress events. Together, these species-specific responses to global change we observe will likely manifest in altered Caribbean reef assemblages in the future.


Assuntos
Antozoários , Animais , Antozoários/fisiologia , Região do Caribe , Recifes de Corais , Ecossistema , Concentração de Íons de Hidrogênio , Água do Mar
4.
Sci Adv ; 7(2)2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33523983

RESUMO

The combination of thermal stress and ocean acidification (OA) can more negatively affect coral calcification than an individual stressors, but the mechanism behind this interaction is unknown. We used two independent methods (microelectrode and boron geochemistry) to measure calcifying fluid pH (pHcf) and carbonate chemistry of the corals Pocillopora damicornis and Stylophora pistillata grown under various temperature and pCO2 conditions. Although these approaches demonstrate that they record pHcf over different time scales, they reveal that both species can cope with OA under optimal temperatures (28°C) by elevating pHcf and aragonite saturation state (Ωcf) in support of calcification. At 31°C, neither species elevated these parameters as they did at 28°C and, likewise, could not maintain substantially positive calcification rates under any pH treatment. These results reveal a previously uncharacterized influence of temperature on coral pHcf regulation-the apparent mechanism behind the negative interaction between thermal stress and OA on coral calcification.

5.
Artigo em Inglês | MEDLINE | ID: mdl-36381649

RESUMO

Elemental ratios in biogenic marine calcium carbonates are widely used in geobiology, environmental science, and paleoenvironmental reconstructions. It is generally accepted that the elemental abundance of biogenic marine carbonates reflects a combination of the abundance of that ion in seawater, the physical properties of seawater, the mineralogy of the biomineral, and the pathways and mechanisms of biomineralization. Here we report measurements of a suite of nine elemental ratios (Li/Ca, B/Ca, Na/Ca, Mg/Ca, Zn/Ca, Sr/Ca, Cd/Ca, Ba/Ca, and U/Ca) in 18 species of benthic marine invertebrates spanning a range of biogenic carbonate polymorph mineralogies (low-Mg calcite, high-Mg calcite, aragonite, mixed mineralogy) and of phyla (including Mollusca, Echinodermata, Arthropoda, Annelida, Cnidaria, Chlorophyta, and Rhodophyta) cultured at a single temperature (25°C) and a range of pCO2 treatments (ca. 409, 606, 903, and 2856 ppm). This dataset was used to explore various controls over elemental partitioning in biogenic marine carbonates, including species-level and biomineralization-pathway-level controls, the influence of internal pH regulation compared to external pH changes, and biocalcification responses to changes in seawater carbonate chemistry. The dataset also enables exploration of broad scale phylogenetic patterns of elemental partitioning across calcifying species, exhibiting high phylogenetic signals estimated from both uni- and multivariate analyses of the elemental ratio data (univariate: λ = 0-0.889; multivariate: λ = 0.895-0.99). Comparing partial R 2 values returned from non-phylogenetic and phylogenetic regression analyses echo the importance of and show that phylogeny explains the elemental ratio data 1.4-59 times better than mineralogy in five out of nine of the elements analyzed. Therefore, the strong associations between biomineral elemental chemistry and species relatedness suggests mechanistic controls over element incorporation rooted in the evolution of biomineralization mechanisms.

6.
Science ; 369(6509): 1351-1354, 2020 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-32913100

RESUMO

Predator loss and climate change are hallmarks of the Anthropocene yet their interactive effects are largely unknown. Here, we show that massive calcareous reefs, built slowly by the alga Clathromorphum nereostratum over centuries to millennia, are now declining because of the emerging interplay between these two processes. Such reefs, the structural base of Aleutian kelp forests, are rapidly eroding because of overgrazing by herbivores. Historical reconstructions and experiments reveal that overgrazing was initiated by the loss of sea otters, Enhydra lutris (which gave rise to herbivores capable of causing bioerosion), and then accelerated with ocean warming and acidification (which increased per capita lethal grazing by 34 to 60% compared with preindustrial times). Thus, keystone predators can mediate the ways in which climate effects emerge in nature and the pace with which they alter ecosystems.


Assuntos
Mudança Climática , Recifes de Corais , Extinção Biológica , Cadeia Alimentar , Kelp , Rodófitas , Alaska
7.
Sci Adv ; 6(5): eaax1314, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-32064331

RESUMO

The response of marine-calcifying organisms to ocean acidification (OA) is highly variable, although the mechanisms behind this variability are not well understood. Here, we use the boron isotopic composition (δ11B) of biogenic calcium carbonate to investigate the extent to which organisms' ability to regulate pH at their site of calcification (pHCF) determines their calcification responses to OA. We report comparative δ11B analyses of 10 species with divergent calcification responses (positive, parabolic, threshold, and negative) to OA. Although the pHCF is closely coupled to calcification responses only in 3 of the 10 species, all 10 species elevate pHCF above pHsw under elevated pCO2. This result suggests that these species may expend additional energy regulating pHCF under future OA. This strategy of elevating pHCF above pHsw appears to be a polyphyletic, if not universal, response to OA among marine calcifiers-although not always the principal factor governing a species' response to OA.

8.
Glob Chang Biol ; 25(11): 3932-3945, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31456305

RESUMO

Anthropogenic global change and local stressors are impacting coral growth and survival worldwide, altering the structure and function of coral reef ecosystems. Here, we show that skeletal extension rates of nearshore colonies of two abundant and widespread Caribbean corals (Siderastrea siderea, Pseudodiploria strigosa) declined across the Belize Mesoamerican Barrier Reef System (MBRS) over the past century, while offshore coral conspecifics exhibited relatively stable extension rates over the same temporal interval. This decline has caused nearshore coral extension rates to converge with those of their historically slower growing offshore coral counterparts. For both species, individual mass coral bleaching events were correlated with low rates of skeletal extension within specific reef environments, but no single bleaching event was correlated with low skeletal extension rates across all reef environments. We postulate that the decline in skeletal extension rates for nearshore corals is driven primarily by the combined effects of long-term ocean warming and increasing exposure to higher levels of land-based anthropogenic stressors, with acute thermally induced bleaching events playing a lesser role. If these declining trends in skeletal growth of nearshore S. siderea and P. strigosa continue into the future, the structure and function of these critical nearshore MBRS coral reef systems is likely to be severely impaired.


Assuntos
Antozoários , Animais , Belize , Região do Caribe , Recifes de Corais , Ecossistema
9.
Proc Biol Sci ; 286(1900): 20182840, 2019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30940056

RESUMO

We conducted a 93-day experiment investigating the independent and combined effects of acidification (280-3300 µatm pCO2) and warming (28°C and 31°C) on calcification and linear extension rates of four key Caribbean coral species ( Siderastrea siderea, Pseudodiploria strigosa, Porites astreoides, Undaria tenuifolia) from inshore and offshore reefs on the Belize Mesoamerican Barrier Reef System. All species exhibited nonlinear declines in calcification rate with increasing pCO2. Warming only reduced calcification in Ps. strigosa. Of the species tested, only S. siderea maintained positive calcification in the aragonite-undersaturated treatment . Temperature and pCO2 had no effect on the linear extension of S. siderea and Po. astreoides, and natal reef environment did not impact any parameter examined. Results suggest that S. siderea is the most resilient of these corals to warming and acidification owing to its ability to maintain positive calcification in all treatments, Ps. strigosa and U. tenuifolia are the least resilient, and Po. astreoides falls in the middle. These results highlight the diversity of calcification responses of Caribbean corals to projected global change.


Assuntos
Antozoários/fisiologia , Calcificação Fisiológica , Aquecimento Global , Temperatura Alta/efeitos adversos , Água do Mar/química , Animais , Belize , Região do Caribe , Concentração de Íons de Hidrogênio , Especificidade da Espécie
10.
Nat Commun ; 9(1): 2857, 2018 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-30030435

RESUMO

Ocean acidification will potentially inhibit calcification by marine organisms; however, the response of the most prolific ocean calcifiers, coccolithophores, to this perturbation remains under characterized. Here we report novel chemical constraints on the response of the widespread coccolithophore species Ochrosphaera neapolitana (O. neapolitana) to changing-CO2 conditions. We cultured this algae under three pCO2-controlled seawater pH conditions (8.05, 8.22, and 8.33). Boron isotopes within the algae's extracellular calcite plates show that this species maintains a constant pH at the calcification site, regardless of CO2-induced changes in pH of the surrounding seawater. Carbon and oxygen isotopes in the algae's calcite plates and carbon isotopes in the algae's organic matter suggest that O. neapolitana utilize carbon from a single internal dissolved inorganic carbon (DIC) pool for both calcification and photosynthesis, and that a greater proportion of dissolved CO2 relative to HCO3- enters the internal DIC pool under acidified conditions. These two observations may explain how O. neapolitana continues calcifying and photosynthesizing at a constant rate under different atmospheric-pCO2 conditions.


Assuntos
Calcificação Fisiológica/fisiologia , Carbono/química , Haptófitas/fisiologia , Fotossíntese/fisiologia , Água do Mar/química , Organismos Aquáticos , Boro/química , Dióxido de Carbono , Homeostase , Concentração de Íons de Hidrogênio , Microscopia Eletrônica de Varredura , Oxigênio/química , Fenômenos Físicos
11.
Sci Rep ; 6: 29613, 2016 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-27470426

RESUMO

Atmospheric pCO2 is predicted to rise from 400 to 900 ppm by year 2100, causing seawater temperature to increase by 1-4 °C and pH to decrease by 0.1-0.3. Sixty-day experiments were conducted to investigate the independent and combined impacts of acidification (pCO2 = 424-426, 888-940 ppm-v) and warming (T = 28, 32 °C) on calcification rate and skeletal morphology of the abundant and widespread Caribbean reef-building scleractinian coral Siderastrea siderea. Hierarchical linear mixed-effects modelling reveals that coral calcification rate was negatively impacted by both warming and acidification, with their combined effects yielding the most deleterious impact. Negative effects of warming (32 °C/424 ppm-v) and high-temperature acidification (32 °C/940 ppm-v) on calcification rate were apparent across both 30-day intervals of the experiment, while effects of low-temperature acidification (28 °C/888 ppm-v) were not apparent until the second 30-day interval-indicating delayed onset of acidification effects at lower temperatures. Notably, two measures of coral skeletal morphology-corallite height and corallite infilling-were negatively impacted by next-century acidification, but not by next-century warming. Therefore, while next-century ocean acidification and warming will reduce the rate at which corals build their skeletons, next-century acidification will also modify the morphology and, potentially, function of coral skeletons.


Assuntos
Antozoários/anatomia & histologia , Antozoários/fisiologia , Água do Mar/química , Ácidos/química , Animais , Calcificação Fisiológica , Recifes de Corais , Temperatura Alta , Concentração de Íons de Hidrogênio , Oceanos e Mares
12.
Proc Biol Sci ; 282(1810)2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26108629

RESUMO

Anthropogenic elevation of atmospheric CO2 is driving global-scale ocean acidification, which consequently influences calcification rates of many marine invertebrates and potentially alters their susceptibility to predation. Ocean acidification may also impair an organism's ability to process environmental and biological cues. These counteracting impacts make it challenging to predict how acidification will alter species interactions and community structure. To examine effects of acidification on consumptive and behavioural interactions between mud crabs (Panopeus herbstii) and oysters (Crassostrea virginica), oysters were reared with and without caged crabs for 71 days at three pCO2 levels. During subsequent predation trials, acidification reduced prey consumption, handling time and duration of unsuccessful predation attempt. These negative effects of ocean acidification on crab foraging behaviour more than offset any benefit to crabs resulting from a reduction in the net rate of oyster calcification. These findings reveal that efforts to evaluate how acidification will alter marine food webs should include quantifying impacts on both calcification rates and animal behaviour.


Assuntos
Braquiúros/fisiologia , Dióxido de Carbono/análise , Cadeia Alimentar , Comportamento Predatório , Água do Mar/química , Animais , Crassostrea/crescimento & desenvolvimento , Concentração de Íons de Hidrogênio
13.
Proc Biol Sci ; 281(1797)2014 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-25377455

RESUMO

Anthropogenic increases in atmospheric CO2 over this century are predicted to cause global average surface ocean pH to decline by 0.1-0.3 pH units and sea surface temperature to increase by 1-4°C. We conducted controlled laboratory experiments to investigate the impacts of CO2-induced ocean acidification (pCO2 = 324, 477, 604, 2553 µatm) and warming (25, 28, 32°C) on the calcification rate of the zooxanthellate scleractinian coral Siderastrea siderea, a widespread, abundant and keystone reef-builder in the Caribbean Sea. We show that both acidification and warming cause a parabolic response in the calcification rate within this coral species. Moderate increases in pCO2 and warming, relative to near-present-day values, enhanced coral calcification, with calcification rates declining under the highest pCO2 and thermal conditions. Equivalent responses to acidification and warming were exhibited by colonies across reef zones and the parabolic nature of the corals' response to these stressors was evident across all three of the experiment's 30-day observational intervals. Furthermore, the warming projected by the Intergovernmental Panel on Climate Change for the end of the twenty-first century caused a fivefold decrease in the rate of coral calcification, while the acidification projected for the same interval had no statistically significant impact on the calcification rate-suggesting that ocean warming poses a more immediate threat than acidification for this important coral species.


Assuntos
Antozoários/fisiologia , Calcificação Fisiológica/fisiologia , Mudança Climática , Água do Mar/química , Animais , Região do Caribe , Recifes de Corais , Concentração de Íons de Hidrogênio , Temperatura , Fatores de Tempo
14.
Science ; 335(6072): 1058-63, 2012 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-22383840

RESUMO

Ocean acidification may have severe consequences for marine ecosystems; however, assessing its future impact is difficult because laboratory experiments and field observations are limited by their reduced ecologic complexity and sample period, respectively. In contrast, the geological record contains long-term evidence for a variety of global environmental perturbations, including ocean acidification plus their associated biotic responses. We review events exhibiting evidence for elevated atmospheric CO(2), global warming, and ocean acidification over the past ~300 million years of Earth's history, some with contemporaneous extinction or evolutionary turnover among marine calcifiers. Although similarities exist, no past event perfectly parallels future projections in terms of disrupting the balance of ocean carbonate chemistry-a consequence of the unprecedented rapidity of CO(2) release currently taking place.


Assuntos
Organismos Aquáticos , Ecossistema , Fenômenos Geológicos , Água do Mar/química , Adaptação Biológica , Animais , Atmosfera , Dióxido de Carbono , Carbonatos/análise , Extinção Biológica , Previsões , Fósseis , Concentração de Íons de Hidrogênio , Oceanos e Mares
15.
PLoS One ; 6(2): e14615, 2011 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-21359203

RESUMO

BACKGROUND: Natural and anthropogenic stressors are predicted to have increasingly negative impacts on coral reefs. Understanding how these environmental stressors have impacted coral skeletal growth should improve our ability to predict how they may affect coral reefs in the future. We investigated century-scale variations in skeletal extension for the slow-growing massive scleractinian coral Siderastrea siderea inhabiting the forereef, backreef, and nearshore reefs of the Mesoamerican Barrier Reef System (MBRS) in the western Caribbean Sea. METHODOLOGY/PRINCIPAL FINDINGS: Thirteen S. siderea cores were extracted, slabbed, and X-rayed. Annual skeletal extension was estimated from adjacent low- and high-density growth bands. Since the early 1900s, forereef S. siderea colonies have shifted from exhibiting the fastest to the slowest average annual skeletal extension, while values for backreef and nearshore colonies have remained relatively constant. The rates of change in annual skeletal extension were -0.020±0.005, 0.011±0.006, and -0.008±0.006 mm yr⁻¹ per year [mean±SE] for forereef, backreef, and nearshore colonies respectively. These values for forereef and nearshore S. siderea were significantly lower by 0.031±0.008 and by 0.019±0.009 mm yr⁻¹ per year, respectively, than for backreef colonies. However, only forereef S. siderea exhibited a statistically significant decline in annual skeletal extension over the last century. CONCLUSIONS/SIGNIFICANCE: Our results suggest that forereef S. siderea colonies are more susceptible to environmental stress than backreef and nearshore counterparts, which may have historically been exposed to higher natural baseline stressors. Alternatively, sediment plumes, nutrients, and pollution originating from watersheds of Guatemala and Honduras may disproportionately impact the forereef environment of the MBRS. We are presently reconstructing the history of environmental stressors that have impacted the MBRS to constrain the cause(s) of the observed reductions in coral skeletal growth. This should improve our ability to predict and potentially mitigate the effects of future environmental stressors on coral reef ecosystems.


Assuntos
Antozoários/anatomia & histologia , Antozoários/crescimento & desenvolvimento , Recifes de Corais , Animais , Belize , Região do Caribe , Regulação para Baixo , Monitoramento Ambiental , Guatemala , Honduras , Densidade Demográfica , Fatores de Tempo , Raios X
16.
Proc Natl Acad Sci U S A ; 99(24): 15323-6, 2002 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-12399549

RESUMO

Shifts in the MgCa ratio of seawater driven by changes in midocean ridge spreading rates have produced oscillations in the mineralogy of nonskeletal carbonate precipitates from seawater on time scales of 10(8) years. Since Cambrian time, skeletal mineralogies of anatomically simple organisms functioning as major reef builders or producers of shallow marine limestones have generally corresponded in mineral composition to nonskeletal precipitates. Here we report on experiments showing that the ambient MgCa ratio actually governs the skeletal mineralogy of some simple organisms. In modern seas, coralline algae produce skeletons of high-Mg calcite (>4 mol % MgCO(3)). We grew three species of these algae in artificial seawaters having three different MgCa ratios. All of the species incorporated amounts of Mg into their skeletons in proportion to the ambient MgCa ratio, mimicking the pattern for nonskeletal precipitation. Thus, the algae calcified as if they were simply inducing precipitation from seawater through their consumption of CO(2) for photosynthesis; presumably organic templates specify the calcite crystal structure of their skeletons. In artificial seawater with the low MgCa ratio of Late Cretaceous seas, the algae in our experiments produced low-Mg calcite (<4 mol % MgCO(3)), the carbonate mineral formed by nonskeletal precipitation in those ancient seas. Our results suggest that many taxa that produce high-Mg calcite today produced low-Mg calcite in Late Cretaceous seas.


Assuntos
Antozoários/metabolismo , Carbonato de Cálcio/química , Magnésio/química , Água do Mar/química , Antozoários/efeitos dos fármacos , Cálcio/química , Cálcio/metabolismo , Carbonato de Cálcio/metabolismo , Evolução Molecular , Magnésio/metabolismo , Paleontologia , Soluções/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...